
Fluxica Peregrine Reference Manual

Fluxica Computer Engineering

WWW: www.fluxica.com
Email: info@fluxica.com

This is the Reference Manual of the (embedded) software testing tool Fluxica Pere-
grine. The Manual relates to the following product versions:

• Fluxica Peregrine Demo

• Fluxica Peregrine Fly

• Fluxica Peregrine Soar

• Fluxica Peregrine Stook

Copyright © 2020-2023 Fluxica Computer Engineering. All rights reserved.

Fluxica Computer Engineering

Contents

Disclaimer 5

1 System Requirements 6

2 Fluxica Peregrine Testing 7
2.1 What? . 7
2.2 Why? . 7
2.3 How? . 7

3 Working Principle 8
3.1 Smart Fuzz Testing . 8
3.2 Generation Based Testing . 8
3.3 Quantifying Test Uncertainty . 8

4 Security 9
4.1 No Network Connection . 9
4.2 Test Results Storage . 9
4.3 License Key Storage . 9

5 Download and Installation 10
5.1 Manual Installation . 10
5.2 Symbolic Linking . 11

5.2.1 Executable Files . 11
5.2.2 Header File (C/C++ Only) . 11
5.2.3 Library File (C/C++ Only) . 11
5.2.4 Header File (Java Only) . 11
5.2.5 Script File (Java Only) . 12

5.3 Scripted Installation . 12

6 File Structure 13
6.1 Dynamic File Creation and Deletion . 15
6.2 Manual Lock File Release . 15

7 Test Setup (C/C++ Only) 16
7.1 C Versus C++ . 17

8 Test Setup (Java Only) 18

9 Peregrine Test Probes 21
9.1 In Vivo Software Testing . 21
9.2 PTP Nomenclature . 21
9.3 PTP Programming Operators . 21
9.4 PTP Combinations . 22
9.5 Peregrine Probe Types (Java Only) . 24

Fluxica Peregrine Reference Manual 2

Fluxica Computer Engineering

10 Test Execution 25
10.1 Headless Testing . 25

10.1.1 Testee Execution . 26
10.1.2 PTP Logging . 26

10.2 Desktop GUI Testing . 26
10.2.1 Test Actions . 27
10.2.2 Log Actions . 28
10.2.3 Progress Bars . 28

11 Test Evaluation 30
11.1 Stringent Test Evaluation . 30

11.1.1 Faulty Expected Program Behavior 30
11.2 Test Oracle . 31

12 Program Peccability and Test Reliability 33
12.1 Probability to Uncover a Fault . 33

12.1.1 Program Peccability - Bit Coverage 33
12.1.2 Program Peccability - Rule of Thumb 34
12.1.3 Program Peccability - PTP Bit Length 34

12.2 Number of Test Iterations . 34
12.3 Uniform Random Probing Versus Inorder Probing 35
12.4 Maximum Test Reliability . 35

13 Test Performance 37
13.1 Time and Space Complexity . 37

14 Example Applications 38
14.1 Quick Code-Test-Evaluation Cycles . 38
14.2 Stress Test . 41

14.2.1 Test Execution . 42
14.2.2 Null Test . 43
14.2.3 Error Injection . 43

14.3 Black Box Test . 47
14.3.1 Oracle . 47
14.3.2 Test Setup . 47
14.3.3 Test Reliability vs. Test Time . 48
14.3.4 Fail Fast: First Simulate Embedded Hardware 48

14.4 Boundary Value Test . 49
14.4.1 Test Setup . 49
14.4.2 Oracle Implementation . 50
14.4.3 Test Result Evaluation . 50
14.4.4 Test Reliability . 51

14.5 Unit Test . 53
14.5.1 Test Version 1: Alternative Implementation 54
14.5.2 Test Version 2: PTP Mapping . 54
14.5.3 Test Version 3: PTP Bit Masking 55

Fluxica Peregrine Reference Manual 3

Fluxica Computer Engineering

14.5.4 Test Performance . 55
14.5.5 Test Reliability . 56

14.6 Monkey Test . 57
14.6.1 Dumb Monkey Test . 58
14.6.2 Smart Monkey Test . 60
14.6.3 Key Takeaway . 62

Fluxica Peregrine Reference Manual 4

Fluxica Computer Engineering

Disclaimer

The information contained in this document is for informational purposes only and sub-
ject to change without notice. Although every precaution has been taken in the prepa-
ration of this document, it may contain inaccuracies, omissions and errors. Fluxica
Computer Engineering (Fluxica for short) is under no obligation to update or other-
wise correct this information. Fluxica makes no representations or warranties with
respect to the accuracy or completeness of the contents of this document. Fluxica as-
sumes no liability of any kind, directly or indirectly, in relation to the operation or use of
the software and hardware products described in this document. No merchantability
or fitness for particular purposes is assumed or implied for these products. No license,
directly or indirectly, to any intellectual property rights is granted by this document.

Fluxica Peregrine Reference Manual 5

Fluxica Computer Engineering

1 System Requirements

This Reference Manual contains the information needed to install and use Fluxica
Peregrine. Fluxica Peregrine has the following system requirements:

Hardware Architecture x86-64, AMD64

Operating System Linux-64, Debian (Ubuntu) or Red Hat (Fedora) based

Software C/C++ compiler (gcc or g++) or Java compiler (JDK with javac and java)

This manual relates to both C/C++ and Java unless otherwise stated. If a section
relates specifically to C/C++ or Java, then this is indicated by the section header
(“C/C++ Only” or “Java Only”, respectively).

Fluxica Peregrine Reference Manual 6

Fluxica Computer Engineering

2 Fluxica Peregrine Testing

2.1 What?

Fluxica Peregrine is a software development tool for automated in vivo software
testing without bias. In vivo software testing is testing (embedded) computer source
code at the execution level, it is the software equivalent of in-circuit hardware testing.

2.2 Why?

The results of the test are used to evaluate software system quality. The evaluation
is based on functionality (the test reveals unexpected or undesirable behavior) and
on statistics (the test confirms that the probability is p for unexpected behavior not to
occur). The goal of the test is twofold:

1. Increase the fault tolerance of the system.

2. Reduce the time and labor needed for testing the system.

2.3 How?

The source code to be tested can be any code that can be repeatedly executed, from
a single statement to an entire program. The developer first adds Peregrine code de-
limiters around the code segment to be tested and then assigns selected variables in
the segment with a matching Peregrine Test Probe. The program including the code
delimiters and Peregrine Test Probes is then compiled to an executable file as usual.
The Peregrine program will perform and control the test.

After selecting the executable file within the Peregrine program, the file is executed
and normal program flow is followed until the code segment is reached. The code
segment is then automatically tested by the Peregrine program by injecting uniformly
distributed pseudo-random (variate) test probes into the segment. These probes are
generated on-the-fly at high speed by the Peregrine program. The test continues until
one of the following events occurs:

1. A failure is detected.

2. A timeout is triggered.

3. A specified number of test iterations is reached.

In the first two cases, the test is terminated by the Peregrine program. In the latter
case, the program under test returns to normal program flow. In all cases, a probe log
is archived on-the-fly to provide the test results for post-test analysis.

Fluxica Peregrine Reference Manual 7

Fluxica Computer Engineering

3 Working Principle

3.1 Smart Fuzz Testing

Fluxica Peregrine is at its heart a smart fuzz tester. Smart fuzz testing is a method
to discover unexpected program behavior by injecting random data into the software
program under test while matching the shape of the expected input. The smarter a
fuzz tester is, the greater the code coverage of the test is.

3.2 Generation Based Testing

A smart fuzz tester is a generation based tester. The input structure of the program
under test is analyzed for its basic data type(s) and effective value range(s). Random
data is then generated to match type(s) and range(s) and injected into the program to
detect potential unexpected program behavior.

3.3 Quantifying Test Uncertainty

The outcome of the test can be used to quantify test uncertainty, which is the proba-
bility for unexpected behavior not to occur. Any software program written in C, C++ or
Java can be tested with the Peregrine software testing tool.

Fluxica Peregrine Reference Manual 8

Fluxica Computer Engineering

4 Security

4.1 No Network Connection

Fluxica Peregrine is a stand-alone application program, it runs locally and all function-
ality is built into the program. The program does not include any network connection
functionality, it can not connect over any computer network and thus can not ‘call
home’ over the internet.

4.2 Test Results Storage

No information is stored other than the test results contained in the probe log files lo-
cated in the $HOME/peregrine/logs/ directory when running the Peregrine program
with the GUI. The probe log temporarily residing in memory is shown by clicking the
Show Probe Log button. A probe log is stored as a file by clicking the Save Probe Log
button and clicking the Remove Probe Logs will permanently remove all probe log files
from the $HOME/peregrine/logs/ directory. Probe logs are plain text files. The file
$HOME/peregrine/.control/.peregrine log id.txt archives the number of probe
logs stored so far.

When running the Peregrine program without the GUI, the output of a test is printed to
stdout and shown in the shell (Linux command line interface). Running the Peregrine
program with or without the GUI, the test results are not used by the program.

4.3 License Key Storage

The license key located at $HOME/peregrine/.control/.peregrine license key in-
cludes the type of license and the company name of the company that purchased the
key in an encrypted format.

Fluxica Peregrine Reference Manual 9

Fluxica Computer Engineering

5 Download and Installation

The Peregrine program can be installed manually or by Bash command line script.
The latter is discussed in Section 5.3. If the script is used, Section 5.1 and Section
5.2 can be skipped.

5.1 Manual Installation

1. Go to the website www.fluxica.com.

2. Go to the Peregrine section.

3. Fluxica Peregrine is available in three production versions Fly, Soar and Stook.

Note: The Demo version is available free of charge and able to demon-
strate the functionality of the commercial versions, but it runs with re-
strictions. See also Table 1.

Each production version has its own tar.gz archive file that is available for
download after payment.

4. A customer specific license key .peregrine license key is automatically pre-
pared and included in the archive file before download. The license key is a
hidden, plain text file located in the $HOME/peregrine/.control/ directory after
installation. The .control directory is a hidden directory.

5. Create the directory $HOME/peregrine/ and download the selected archive file:

6. Extract the archive file with:

$ tar -xvf peregrine_<version>.tar.gz -C $HOME/peregrine/

First moving the archive file to the $HOME/peregrine/ directory and then extract-
ing it with tar -xvf peregrine <version>.tar.gz is also possible.

7. In $HOME/peregrine/, assign read, write and execute permission to the file
owner of the peregrine program and its GUI program with:

$ chmod 700 peregrine

$ chmod 700 peregrine_gui

8. The Peregrine program is now installed and ready to be used. For ease of use,
it is advised to create the symbolic links discussed in Section 5.2.

Fluxica Peregrine Reference Manual 10

Fluxica Computer Engineering

Demo Fly Soar Stook
NTmax 1 ∗ 106 10 ∗ 106 1 ∗ 109 1 ∗ 1012
NPmax

1 8 16 32
True random seeding yes yes yes yes

Table 1: NTmax
refers to the maximum number of possible test iterations and NPmax

to the maximum number of test probes that can be logged at any given moment.

5.2 Symbolic Linking

Symbolic links are used to make the Peregrine executable files, header files and library
files system wide available.1 Symbolic links can be defined manually or by Bash
command line script. The latter is discussed in Section 5.3.

5.2.1 Executable Files

By creating a symbolic link
ln -s $HOME/peregrine/peregrine /usr/bin/peregrine the binary executable file
peregrine can be executed from anywhere within the associated user account. The
same can be done for peregrine gui.2

5.2.2 Header File (C/C++ Only)

By creating a symbolic link
ln -s $HOME/peregrine/c cpp/peregrine in vivo.h /usr/include/peregrine in vivo.h

the header file peregrine in vivo.h can be included in a C or C++ program using
‘angle brackets’ (i.e., #include <peregrine in vivo.h>).

5.2.3 Library File (C/C++ Only)

By creating a symbolic link
ln -s $HOME/peregrine/c cpp/libperegrine.a /usr/lib/libperegrine.a the static
library file libperegrine.a can be linked without having to specify in which directory
it resides (i.e., without having to use the gcc -L option flag).

5.2.4 Header File (Java Only)

By creating a symbolic link
ln -s $HOME/peregrine/peregrinejava/PeregrineInVivo.h /usr/include/PeregrineInVivo.h

the header file PeregrineInVivo.h can be included in a Java program using ‘angle
brackets’ (i.e., #include <PeregrineInVivo.h>).

1Rather than creating symbolic links, the files can also be directly copied or moved to the respective
standard directories.

2Depending on your Linux configuration, it may be necessary to update the PATH variable by adding
/usr/bin to the /etc/environment file and then run the export PATH command.

Fluxica Peregrine Reference Manual 11

Fluxica Computer Engineering

5.2.5 Script File (Java Only)

By creating a symbolic link
ln -s $HOME/peregrine/peregrinejava/cppjava.sh /usr/bin/cppjava the Bash
command line script file cppjava.sh can be executed from anywhere within the asso-
ciated user account.

5.3 Scripted Installation

A Bash command line script peregrine auto.sh that automates the manual installa-
tion procedure of Section 5.1 and Section 5.2 is included in the download:

1. Download the peregrine <version>.tar.gz archive file and extract the script
file in any directory:

$ tar -xf peregrine_<version>.tar.gz ./peregrine_auto.sh

If you are using a GUI desktop environment, the script file can also be extracted
by double-clicking the archive file, selecting the support directory and then drag-
dropping the peregrine auto.sh script file to the directory where the archive file
is located.

2. To install or uninstall the Peregrine archive file, run the script and follow the
instructions:

$./peregrine_auto.sh

The symbolic links for the Peregrine executable files, header files and library files are
automatically created (install option) and removed (uninstall option) by the script file.

Fluxica Peregrine Reference Manual 12

Fluxica Computer Engineering

6 File Structure

The Peregrine file structure after installing the archive file is shown in Figure 1.

Figure 1: Peregrine file structure.

Linux uses a file system where everything is a file and if it is not a file, it is a process.
A directory is in this context a file listing other files. The Peregrine file structure is
summarized below:

• peregrine: command line interface (CLI) Peregrine program. The Peregrine
program implements testing functionality and runs in parallel with the program
under test.

• peregrine gui: graphical user interface (GUI) Peregrine program. The GUI is
a decoupled interface to peregrine, it does not implement testing functionality
and runs in parallel with the program under test and the Peregrine program.

Fluxica Peregrine Reference Manual 13

Fluxica Computer Engineering

• c cpp directory: contains the interface and library files for C/C++.

– libperegrine.a file: static library file handling interprocess communica-
tion between the Peregrine program and the program under test. The lbrary
does not implement testing functionality.

– peregrine in vivo.h: header file providing a macro interface for access-
ing Peregrine library functionality.

• .control directory: contains the hidden run-time control files required to run the
Peregrine program. The files are hidden to emphasize not to change, move or
remove them.

– .peregrine license key: text file storing a customer specific license key
required for using the Peregrine program in a production environment.

– .peregrine log id.txt: text file identifying the last probe log stored in the
logs directory.

– .peregrine tester lock, .peregrine gui lock and .peregrine testee lock:
lock files required for synchronizing the parallel execution of the Peregrine
program, the GUI and the program under test.

• logs directory: location where the probe log files are stored.

– peregrine probe log <n>.txt: text file containing the n-th probe log stored
by the user through the GUI, where n is a file counter.

• peregrinejava directory: contains the interface and library files for Java.

– cppjava.sh: text file defining the Bash command line script for preprocess-
ing and compiling Java source files.

– libperegrinejava.so: shared library file implementing the same function-
ality as libperegrine.a with Java as target language rather than C/C++.

– PeregrineInVivo.class: class file accessing Peregrine library functional-
ity through the Java Native Interface.

– PeregrineInVivo.h: header file providing a macro interface for accessing
PeregrineInVivo.class.

• support directory: contains support files that are not required to run the Pere-
grine program.

– install uninstall.sh: text file defining the Bash command line script for
installing and uninstalling the archive file.

– peregrine eula.pdf: End User License Agreement in Portable Document
Format.

– peregrine manual.pdf: Fluxica Peregrine Reference Manual in Portable
Document Format.

– peregrine sha512 checksum.txt: text file containing the SHA512 check-
sum for each of the files included in the archive file.

Fluxica Peregrine Reference Manual 14

Fluxica Computer Engineering

6.1 Dynamic File Creation and Deletion

The logs directory, the .peregrine log id.txt file and the peregrine probe log <n>.txt

files initially do not exist, they are created by the Peregrine program when needed.

The hidden lock files .peregrine tester lock, .peregrine gui lock and .peregrine testee lock

are temporarily stored in the .control directory. They are created on program initia-
tion and removed on program termination.

6.2 Manual Lock File Release

In case the program flow of Tester or Testee is terminated prematurely (e.g., with
Ctrl+C), the Peregrine related interprocess communication (IPC) resources, which
includes the lock files, are not released. This will prevent another test to run until
these resources are released. If such a situation occurs, the IPC resources can be
released by invoking peregrine which will then exit with an error message or by in-
voking peregrine gui immediately followed by closing its window. In both cases, the
IPC resources are released.

The lock files can also be manually released by moving to the .control directory
and removing the respective lock files one by one or all at once:

$ cd $HOME/peregrine/.control/

followed by

$ rm .*lock*

Fluxica Peregrine Reference Manual 15

Fluxica Computer Engineering

7 Test Setup (C/C++ Only)

The following code snippet is used to illustrate how to set up a Peregrine test:

int32_t x;

x = input_value();

process_value(x);

Setting up the test involves the following four steps:

1. Include the header file peregrine in vivo.h:

#include <peregrine_in_vivo.h>

/* ... */

int32_t x;

x = input_value();

process_value(x);

2. Identify the code segment by adding the two code delimiters PEREGRINE RED CLIP

and PEREGRINE BLACK CLIP3 around the segment. The code segment can be
anything from a single statement to an entire program:

#include <peregrine_in_vivo.h>

/* ... */

int32_t x;

PEREGRINE_RED_CLIP

x = input_value();

process_value(x);

PEREGRINE_BLACK_CLIP

3The delimiters are named after the red and black probe clips in-circuit hardware testing.

Fluxica Peregrine Reference Manual 16

Fluxica Computer Engineering

3. Select the test injection point(s) in the marked out code segment. A potential
injection point is any point where variables are assigned or passed. Peregrine
Test Probes such as INT32 (note the capitals) are used to inject a high-speed
stream of uniformly distributed pseudo-random (variate) values into the code
segment. Variable x is selected as an injection point:

#include <peregrine_in_vivo.h>

/* ... */

int32_t x;

PEREGRINE_RED_CLIP

x = INT32; /* input_value(); */

process_value(x);

PEREGRINE_BLACK_CLIP

4. Compile and link the program as usual to create an executable file, but link
additionally against the libperegrine.a library:

$ gcc <your_program_name>.c -lperegrine -o <executable_name>

The Peregrine test setup is now prepared and the program is ready for testing. Re-
move the following Peregrine specific test code artifacts after testing:

1. Header file inclusion peregrine in vivo.h.

2. Code delimiters PEREGRINE RED CLIP and PEREGRINE BLACK CLIP.

3. Peregrine Test Probes such as INT32.

7.1 C Versus C++

Other than having to replace gcc with g++ in the last step, the test setup is identical for
C and C++. Unlike C, C++ supports function overloading, which is a feature of object
oriented programming. C++ uses name mangling to facilitate the overloading feature.
Name mangling may result in undefined references when C files are linked to a C++
program. The Peregrine header file uses the preprocessor to detect whether the C
or C++ compiler is used and if needed prevents undefined references due to name
mangling from occurring.

Fluxica Peregrine Reference Manual 17

Fluxica Computer Engineering

8 Test Setup (Java Only)

The Peregrine test interface for Java is available as a Java package. As per Java
requirement, packages have to be available in the project directory structure. After
moving to the project directory, the required directory and its contents can be copied
to the current location with:

$ cp -r $HOME/peregrine/peregrinejava/ .

The Peregrine related code is added to the Java source code using C-styled prepro-
cessor directives. The PeregrinejavaInVivo.h header file located in the peregrinejava

directory acts as an intermediate between the Java source file and the preprocessor.
After preprocessing, the Java source file is compiled as usual by the Java compiler.

The following code snippet is used to illustrate how to set up a Peregrine test:

/* ... */

public class Testee {

public static void main(String[] args) {

int x;

x = SomeClass.inputValue();

OtherClass.processValue(x);

}

}

Setting up the test involves the following four steps:

1. Include the header file peregrineInVivo.h:

#include <PeregrineInVivo.h>

/* ... */

public class Testee {

public static void main(String[] args) {

long x;

x = SomeClass.inputValue();

OtherClass.processValue(x);

}

}

Fluxica Peregrine Reference Manual 18

Fluxica Computer Engineering

2. Identify the code segment by adding the two code delimiters PEREGRINE RED CLIP

and PEREGRINE BLACK CLIP4 around the segment. The code segment can be
anything from a single statement to an entire program:

#include <PeregrineInVivo.h>

/* ... */

public class Testee {

public static void main(String[] args) {

long x;

PEREGRINE_RED_CLIP

x = SomeClass.inputValue();

OtherClass.processValue(x);

PEREGRINE_BLACK_CLIP

}

}

3. Select the test injection point(s) in the marked out code segment. A potential
injection point is any point where variables are assigned or passed. Peregrine
Test Probes such as LONG (note the capitals) are used to inject a high-speed
stream of uniformly distributed pseudo-random (variate) values into the code
segment. Variable x is selected as an injection point:

#include <PeregrineInVivo.h>

/* ... */

public class Testee {

public static void main(String[] args) {

long x;

PEREGRINE_RED_CLIP

x = LONG; /* SomeClass.inputValue(); */

OtherClass.processValue(x);

PEREGRINE_BLACK_CLIP

}

}

4The delimiters are named after the red and black probe clips in-circuit hardware testing.

Fluxica Peregrine Reference Manual 19

Fluxica Computer Engineering

4. Preprocess and compile the program to create the Java class file that can be
executed by the Java virtual machine:

$ cppjava Testee.java

The JAVAC CMD variable in the Bash command line script cppjava.sh can be
adapted in a text editor to include your usual compiler arguments. The script file
is located in the $HOME/peregrine/peregrinejava directory.

The Peregrine test setup is now prepared and the program is ready for testing. The
location of the peregrinejava directory has to be specified when Testee is executed:

$ java -Djava.library.path=./peregrinejava Testee

Remove the following Peregrine specific test code artifacts after testing:

1. Header file inclusion PeregrineInVivo.h.

2. Code delimiters PEREGRINE RED CLIP and PEREGRINE BLACK CLIP.

3. Peregrine Test Probes such as LONG.

Fluxica Peregrine Reference Manual 20

Fluxica Computer Engineering

9 Peregrine Test Probes

The Peregrine program controls the test and is referred to as Peregrine Tester. The
program under test, which has the Peregrine code added to it, is referred to as Tes-
tee. Communication between Tester and Testee takes place through a shared mem-
ory area. Through this memory area, Tester provides test probes that are injected
into Testee and continuously monitors the response of Testee. These test probes are
generated in real-time by Tester and delivered to Testee as a high-speed stream of in-
dependent values of a specific variable type. The speed of this stream is dynamically
adjusted to the processing speed of Testee. The test probes are in every practical
sense without any bias, most notably without human bias.

A Peregrine Test Probe (PTP) is a specific type of variable with a beforehand un-
known value that will change to another unknown value after it has been read and
before it can be read again. The next value does not depend on one or more previ-
ous values. As explained in Section 12, PTP values follow a pseudo-random uniform
distribution and are variate values.

9.1 In Vivo Software Testing

PTPs are applied in between the Peregrine code delimiters PEREGRINE RED CLIP and
PEREGRINE BLACK CLIP where they are assigned to a variable or passed as an argu-
ment to a function. Assigning or passing a PTP provides Tester with a direct access
in vivo injection point into Testee. In vivo software testing is testing “within the liv-
ing” computer program and monitoring how the program responds to stimuli. Tester
provides the stimuli, high-speed streams of variate test probes, and monitors the re-
sponse of Testee on the stimuli to take test control decisions.

9.2 PTP Nomenclature

The name of a PTP indicates its type and bit length. An INT16 indicates a 16-bit
signed integer, whereas UINT8 indicates an 8-bit unsigned integer. PTPs with a bit
length of less than eight bits such as UINT2 and BOOL1 are represented in memory by
one byte as the smallest addressable unit of data in C/C++ and Java is a single byte.
An overview of the PTPs is shown in Table 2.

9.3 PTP Programming Operators

Any point in between PEREGRINE RED CLIP and PEREGRINE BLACK CLIP where vari-
ables are assigned or passed can be substituted by a PTP. PTPs can be used in
conjunction with the following programming operators: arithmetic, comparison, logical
and bitwise. PTPs can not be assigned a value in Testee, PTP values are assigned
by Tester outside Testee. Assigning a value to a PTP through the assignment (=),
increment (++) or decrement (--) operator is thus not possible.

Fluxica Peregrine Reference Manual 21

Fluxica Computer Engineering

PTP Type Byte count Bit length Interval
INT64 8 64 −263 . . . 263 − 1
INT32 4 32 −231 . . . 231 − 1
INT16 2 16 −215 . . . 215 − 1
INT8 1 8 −27 . . . 27 − 1
INT4 1 4 −23 . . . 23 − 1
INT2 1 2 −21 . . . 21 − 1
CHAR8 1 8 −27 . . . 27 − 1

PTP Type Byte count Bit length Interval
UINT64 8 64 0 . . . 264 − 1
UINT32 4 32 0 . . . 232 − 1
UINT16 2 16 0 . . . 216 − 1
UINT8 1 8 0 . . . 28 − 1
UINT4 1 4 0 . . . 24 − 1
UINT2 1 2 0 . . . 22 − 1
UINT1 1 1 0 . . . 21 − 1
UCHAR8 1 8 0 . . . 28 − 1

PTP Type Byte count Bit length Interval
BOOL1 1 1 0 . . . 21 − 1

PTP Type Byte count Bit count Range
FLOAT32 4 32 ≈ 1.2 ∗ 10−38 . . . ≈ 3.4 ∗ 1038
DOUBLE64 8 64 ≈ 2.2 ∗ 10−308 . . . ≈ 1.8 ∗ 10308

Table 2: Peregrine Test Probes.

9.4 PTP Combinations

The bit length BP of a PTP may be shorter, equal or longer than the bit length BI of
the injection point it operates on:

• Shorter: the PTP values are uniformly distributed over the BP least significant
bits of the injection point.

• Equal: the PTP values are uniformly distributed over all BI bits of the injection
point.

• Longer: the PTP values are truncated to their BI least significant bits and uni-
formly distributed over all BI bits of the injection point.

From a performance point of view, applying PTPs with a bit length longer than that of
the injection point is not optimal.

Applying PTPs with a bit length equal to that of the injection point is typically use-
ful for black box testing (e.g., the boundary values of the injection point are unknown).

Fluxica Peregrine Reference Manual 22

Fluxica Computer Engineering

Combining PTPs together with constants and variables where the result has a bit
length shorter than that of the injection point allows for defining tests that operate in a
specific sub-interval of the injection point.

Examples of combined PTP intervals are:

• An integer in the interval [−136 . . . 134] is assigned to i:
int16 t i = INT8 + INT4;

• An integer in the interval [2 ∗ (−28) . . . 2 ∗ (28 − 1)] is assigned to i:
int16 t i = INT8 + INT8;

• An ASCII character in the interval [0 . . . 127] is assigned to c:
char c = CHAR8; if (c < 0) c = abs(c + 1);

• A boolean with a 1/2 probability for true and otherwise false is assigned to b:
bool b = BOOL1;

• A boolean with a 1/256 probability for true and otherwise false is assigned to b:
bool b = (UINT8==42) ? true : false;

• A float in the interval [−0.128 . . . 0.127] is assigned to f :
float f = (float)INT8 * 0.001;

• a double in the interval [0 . . . 1000] is assigned to d:
double d=fabs(DOUBLE64); while (d>1000) d/=10;

Examples of combined PTP intervals around a constant or variable are:

• An integer in the interval [40 . . . 43] is assigned to i:
uint 8 i = 42 + INT2;

• An integer in the interval [j − 128 . . . j + 127] is assigned to i:
int16 t i = j + INT8;

• An integer in the interval [0, v] is assigned to i:
uint16 t i = v * UINT1;

• An integer in the interval [−128, 127] or [872, 1127] is assigned to i:
int16 t i = (BOOL1) ? INT8 : 1000+INT8;

• An ASCII character in the interval [a . . . z] is assigned to c:
char c = 97 + UINT4 + UINT2 + UINT2 + UINT2 + UINT1;

• An ASCII character in the interval [A . . . Z] is assigned to c:
char c; do {c=UCHAR8;} while(c<65 || c>90);

• A double in the interval [0, [const . . . const+ 0.065535]] is assigned to d:
double d = (const + (double)UINT16 * 0.000001) * UINT1;

Fluxica Peregrine Reference Manual 23

Fluxica Computer Engineering

9.5 Peregrine Probe Types (Java Only)

The PTPs shown in Table 2 are available for both C/C++ and Java. For convenience,
the PTPs shown in Table 3 are additionally available for Java. The Java specific PTPs
fit the data type naming convention common for Java. Other than their name, the Java
PTPs are identical to the C/C++ PTPs referred to as their mirror type in the table.

PTP Type (Java only) Byte count Bit length Interval Mirror Type
LONG 8 64 −263 . . . 263 − 1 INT64

INT 4 32 −231 . . . 231 − 1 INT64

SHORT 2 16 −215 . . . 215 − 1 INT16

BYTE 1 8 −27 . . . 27 − 1 INT8

CHAR 1 8 0 . . . 216 − 1 UINT16

PTP Type (Java only) Byte count Bit length Interval Mirror Type
BOOLEAN 1 1 0 . . . 21 − 1 BOOL1

PTP Type (Java only) Byte count Bit count Interval Mirror Type
FLOAT 4 32 1.2 ∗ 10−38 . . . 3.4 ∗ 1038 FLOAT32

DOUBLE 8 64 2.2 ∗ 10−308 . . . 1.8 ∗ 10308 DOUBLE64

Table 3: Additional Peregrine Test Probes for Java.

Fluxica Peregrine Reference Manual 24

Fluxica Computer Engineering

10 Test Execution

The code delimiters PEREGRINE RED CLIP and PEREGRINE BLACK CLIP mark out the
code segment in Testee that will be probed by Tester. Tester and Testee each run as
independent processes. If both Tester and Testee are running, Tester will wait and
listen for a PTP request call from Testee. When this call is initiated for the first time by
PEREGRINE RED CLIP, the program flow of Testee is taken over by Tester. Tester then
repeatedly executes the code segment and injects a stream of PTPs into Testee. The
test continues until one of the following events occurs:

1. A failure is detected.

2. A timeout is triggered.

3. A specified number of test iterations is reached.

The Peregrine Tester program is a headless command line software program, which
is particularly convenient for setting up automated batch tests. A desktop GUI is also
available for running the Peregrine Tester program. The GUI runs as an independent
process and forks two copies of itself that are overlayed with the Tester and Testee
program, respectively. Running a test thus consists of at two parallel processes (head-
less Tester and Testee) or three parallel processes (GUI next to Tester and Testee).

10.1 Headless Testing

The CLI (terminal) command to run Peregrine Tester without a GUI is:

$ peregrine <ITERATIONS> <TIMEOUT>

The first argument ITERATIONS sets the maximum number of test iterations. A sin-
gle iteration executes the code segment marked out by PEREGRINE RED CLIP and
PEREGRINE BLACK CLIP one time. This argument is expressed as an integer in the
interval [1 . . . NTmax], where NTmax is the maximum number of iterations for a given
Peregrine product version as shown in Table 1. If a test reaches the maximum number
of test iterations, Testee continuous by executing the code after PEREGRINE BLACK CLIP.

The second argument TIMEOUT sets the maximum time Tester will wait for Testee
to complete a single test iteration. The unit of this argument is seconds and it is ex-
pressed as an integer in the interval [1 . . . 90]. On timeout, Tester terminates Testee
automatically and finalizes the test.

The CLI command either takes no arguments or (i.e., exclusive or) both arguments.
Without arguments, the default values for ITERATIONS (NTmax) and TIMEOUT (two sec-
onds) are used.

Fluxica Peregrine Reference Manual 25

Fluxica Computer Engineering

10.1.1 Testee Execution

When Tester is executed by CLI, it does not initiate the execution of Testee. Testee
can be invoked in any manner that is convenient (usually in an other terminal). If
Testee is running but Tester is not, the code segment between PEREGRINE RED CLIP

and PEREGRINE BLACK CLIP is passed over by Testee. Tester has to be started be-
fore Testee and once Tester is running, it will wait and listen for Testee to reach
PEREGRINE RED CLIP and take control of the test.

10.1.2 PTP Logging

At the end of each test, the last NP PTPs that have been injected into Testee are
outputted to the CLI as a probe log. This output can be redirected to a probe log text
file as follows:

$ peregrine > peregrine_probe_log.txt

The maximum number of PTPs NPmax that can be logged depends on the product
version as shown in Table 1. The number of logged PTPs NP is less than NPmax if
the test is concluded before probing Testee NPmax times.

If a PTP (or a combination of PTPs) uncovered faulty or unexpected program be-
havior, the probe log can be used to analyze the source code of Testee.

During testing, a progress bar is outputted to the CLI indicating the number of test
iterations that has been performed as a percentage of the maximum number of pos-
sible test iterations. The progress bar and command related user feedback are not
redirected to the probe log text file with the command given above, only the probe log
itself is redirected.

10.2 Desktop GUI Testing

Next to double clicking the desktop icon named peregrine gui, Peregrine Tester can
be run with the following CLI command:

$ peregrine_gui

Figure 2 shows the main window of the GUI. The left side of the GUI interfaces with
Testee, whereas the right side interfaces with Tester. Button specific functionality de-
pends on the test state and is controlled by the GUI by activating or de-activating
buttons.

The GUI provides two types of actions, test actions (process related) and log actions
(archive related). Tester and Testee each have their own progress bar to visualize the
progress of the entire test and of a single test iteration, respectively.

Fluxica Peregrine Reference Manual 26

Fluxica Computer Engineering

Figure 2: Peregrine main window.

10.2.1 Test Actions

The test process can be controlled through the GUI in terms of starting a test, test
duration and test termination. The test process related actions are:

• Select Testee Executable

• Testee Timeout

• Tester Iterations Ratio

• Terminate Test

The Select Testee Executable button selects the file containing the Testee exe-
cutable. A Testee executable is either a C/C++ executable or a Java class file. After
selecting the executable, Tester automatically starts the test by executing Testee. In
case of a Java class file, Tester will invoke the Java virtual machine and run the class
file automatically.

The Testee Timeout radio button group sets the maximum time Tester will wait for
Testee to complete a single test iteration. The timeout can be changed on-the-fly
while executing a test. Tester will automatically terminate Testee if the waiting time
reaches the selected timeout value. The unit of the timeout setting is seconds in the
interval [1,2,5,10,30,60,90].

The Tester Iterations Ratio radio button group sets the number of test iterations
NT to perform, it determines how many times the code segment marked out by
PEREGRINE RED CLIP and PEREGRINE BLACK CLIP is executed. The number of itera-
tions can be changed on-the-fly while executing a test. The buttons in the interval

Fluxica Peregrine Reference Manual 27

Fluxica Computer Engineering

[10,100,1k,10k,100k,250k,1M] represent the number of iterations as a parts per
million of the maximum number of iterations NTmax. Table 1 shows NTmax for each
Peregrine product version.

The number of test iterations to perform is represented in the Tester Clipp-off Iteration
box, whereas the Tester Current Iteration box represents the ongoing test iteration.
For convenience, iteration numbers are represented in powers of 10 with metric pre-
fixes, e.g., 987654321987 becomes 987 T 654 M 321 k 987.

The Terminate Test button terminates the test and Testee immediately. Terminating
the test means that Testee code that follows PEREGRINE BLACK CLIP is not executed.

10.2.2 Log Actions

The last NP PTPs that have been injected into Testee can be saved to a probe log
file. The maximum number of PTPs NPmax that can be logged at any given moment
depends on the Peregrine product version as shown in Table 1. The number of logged
PTPs NP is less than NPmax if the test is finalized before probing Testee NPmax times.

If a PTP (or a combination of PTPs) uncovered faulty or unexpected program be-
havior, the probe log file can be used to analyze the source code of Testee. The log
archive related actions are:

• Show Probe Log

• Save Probe Log

• Remove Probe Logs

The Show Probe Log button displays the last NP PTPs that have been injected into
Testee together with test specifics such as test state and test duration.

The Save Probe Log button saves the PTPs listed by Show Probe Log in a text
file in the $HOME/peregrine/logs/ directory with the following naming convention
peregrine probe log <n>.txt where n is a file counter. The file counter is initially
set to 0 and automatically increases allowing to save multiple files after each other.

The Remove Probe Logs button removes all the probe log files that have been saved
previously and resets the file counter to 0.

10.2.3 Progress Bars

To get a quick indication on the progress of a test, the GUI provides two progress bars:

• Test Iterations

• Testee Timeout

Fluxica Peregrine Reference Manual 28

Fluxica Computer Engineering

The Test Iterations progress bar shows the number of test iterations that have been
performed in ratio to the number of test iterations NT to be performed. Changing NT

during the test will automatically adjust the progress bar in ratio. This progress bar
depends on the settings provided by the Tester Iterations Ratio radio button group
discussed in Section 10.2.1.

The Testee Timeout progress bar shows how long Tester has been waiting for Testee
in ratio to the timeout setting. The progress bar is reset to 0 for each test iteration,
meaning that if a test iteration takes little time (e.g., a few microseconds) the progress
bar stays visually on 0 percent or just above 0 percent.

Fluxica Peregrine Reference Manual 29

Fluxica Computer Engineering

11 Test Evaluation

The results of a Peregrine test can be classified as follows:

1. Pass: The PTPs generated expected program behavior.

2. Fail: The PTPs generated unexpected program behavior.

3. Timeout: The time frame for Testee to respond has passed.

Expected program behavior includes all first order and all second order function-
ality. First order functionality has been the reason why the program is developed.
Second order functionality has not been the reason why the program is developed,
but is required to make first order functionality possible. An example of second order
functionality is an error handler.

Unexpected program behavior is all program behavior that is not expected (e.g.,
undesirable, faulty, defective or vulnerable behavior), it is not part of any kind of func-
tionality the program is supposed to have and is classified as a Fail.

A timeout is in the first place a lack of response. Tester does not receive a response
from Testee in the specified time frame (i.e., Testee has not completed its test iteration
in time). A timeout is then triggered and Tester terminates the test and Testee. If the
time frame of a timeout is beyond the point of expected program behavior, the timeout
can be classified as a Fail.

11.1 Stringent Test Evaluation

Specifying a time frame for the timeout that is considered unexpected program behav-
ior makes a more rigorous or stringent test evaluation possible. A test result is then
classified as a Fail unless it is a Pass:

1. Pass: The PTPs generated expected program behavior.

2. Fail: The PTPs did not generate program behavior classifying as a Pass.

Formally, if and only if it is a Pass then it is not a Fail: Pass ⇐⇒ Fail. A stringent
evaluation has two main advantages. The classification is always conclusive, a time-
out and also unforeseen and misunderstood output behavior classify as a Fail, and is
easy to understand and implement.

11.1.1 Faulty Expected Program Behavior

In certain development settings it may occur that faults in the code base are known
but not fixed and the resulting faulty program behavior is then explained (away) as
expected program behavior. Evaluating a system for faulty expected program behav-
ior should be avoided as it goes against the idea that a system is evaluated for the
behavior it should have rather for the behavior it has.

Fluxica Peregrine Reference Manual 30

Fluxica Computer Engineering

11.2 Test Oracle

A test oracle determines whether a test passes or fails. It takes the input-output values
of the system under test and compares this with the input-output values that the oracle
determines the system should have. In case of a Pass or Fail, the oracle performs one
of the following actions:

1. Pass: Do nothing.

2. Fail: Broadcast to Tester it is not a Pass by raising PEREGRINE ORACLE.

The Fail related action will cause Tester to immediately end the test and report the
probe log. The oracle should not terminate Testee, as test control and thus program
control is with Tester.

Defining the oracle before starting to program and iteratively testing each step in the
programming process is good engineering practice, it prevents and detects faults right
from the beginning. The longer a fault is not detected, the more consequences it will
have as the program grows in size and the more effort it will require to correct it.

The following code snippet is prepared for Peregrine testing with an in-program test
oracle:

uint16_t val1, val2, process_result;

val1 = set_value(val1);

val2 = set_value(val2);

process_result = process_values(val1, val2);

The test oracle confirms, by not raising PEREGRINE ORACLE, that the result of the func-
tion process values falls within a specified range:

#include <peregrine_in_vivo.h>

/* ... */

uint16_t val1, val2, process_result;

PEREGRINE_RED_CLIP

/* val1 = set_value(val1); */

/* val2 = set_value(val2); */

process_result = process_values(UINT16, UINT16);

if (process_result>=0 && process_result<=255) { /* Do nothing. */ }

else PEREGRINE_ORACLE; /* Raise a Fail and immediately terminate the test. */

PEREGRINE_BLACK_CLIP

Fluxica Peregrine Reference Manual 31

Fluxica Computer Engineering

An alternative test oracle can implement a mapping matrix oracle matrix that takes
the input values to process values and maps them to the value that process result

should have. The oracle compares the input-output combination of the function process values

with the input-output combination the function has been designed for:

#include <peregrine_in_vivo.h>

/* ... */

uint16_t val1, val2, process_result;

PEREGRINE_RED_CLIP

val1 = UINT16; /* set_value(val1); */

val2 = UINT16; /* set_value(val2); */

process_result = process_values(val1, val2);

if (oracle_matrix(val1,val2)!=process_result) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

As with the previous example, the oracle uses a stringent evaluation by comparing
against expected program behavior. The first oracle confirms if a function result is
within the expected operating range, whereas the second oracle confirms if a func-
tion result matches the expected input-output combination in a one-to-one fashion.
The first oracle can not detect unexpected program behavior within the boundaries of
expected program behavior, the second oracle can.

Fluxica Peregrine Reference Manual 32

Fluxica Computer Engineering

This is a limited version of the manual. The full version of the manual is available in
the commercial download packages Peregrine Fly, Soar and Stook.

Fluxica Peregrine Reference Manual

Fluxica Computer Engineering

13 Test Performance

If the time required by the Testee process would be reduced to an absolute minimum
then the maximum performance of Tester for a given hardware platform can be de-
termined. The performance of Tester has been measured on an x86-64 platform with
an Intel E31230 CPU clocked at 3.2 GHz and with 4GB of internal memory running
Ubuntu 20.04.5 LTS with Linux kernel version 5.15.0-67-generic. The source code has
been compiled with gcc version 9.4.0. The program for measuring the performance
for generating UINT8 PTPs is:

#include <peregrine_in_vivo.h>

void main() {

uint8_t x; /* Run for each PTP type. */

PEREGRINE_RED_CLIP

x=UINT8;

PEREGRINE_BLACK_CLIP

}

The time required to generate 1 ∗ 109 PTPs is measured for all PTP types. The maxi-
mum performance of Tester depends on the byte count of the applied PTP type. PTPs
with a bit length of less than eight bits such as UINT2 and BOOL1 are represented in
memory by one byte as the smallest addressable unit of data in C/C++ and Java is a
single byte. The performance results are shown in Table 5.

PTP Type #Bytes #Bits Time (secs) Probes/secs Bits/secs
INT64, UINT64, DOUBLE64 8 64 120 8.3 ∗ 106 533.3 ∗ 106
INT32, UINT32, FLOAT32 4 32 99 10.1 ∗ 106 323.2 ∗ 106

INT16, UINT16 2 16 91 11.0 ∗ 106 175.8 ∗ 106
INT8, UINT8, CHAR8, UCHAR8 1 8 84 11.9 ∗ 106 95.2 ∗ 106

INT4, UINT4 1 4 84 11.9 ∗ 106 47.6 ∗ 106
INT2, UINT2 1 2 84 11.9 ∗ 106 23.8 ∗ 106
UINT1, BOOL1 1 1 84 11.9 ∗ 106 11.9 ∗ 106

Table 5: Maximum Tester performance for generating 1 ∗ 109 PTPs of each type for a
given hardware platform.

13.1 Time and Space Complexity

The performance of Tester is constant, both time and space complexity are of or-
der O(1). The overall performance of a test is determined by the time and space
complexity of the code segment marked out in Testee by PEREGRINE RED CLIP and
PEREGRINE BLACK CLIP.

Fluxica Peregrine Reference Manual 37

Fluxica Computer Engineering

14 Example Applications

The concept behind the examples presented in this section apply to both C/C++ and
Java. The test setup and the PTP related programming constructs in each of the
examples apply in a one-to-one fashion to both C/C++ and Java. An example entirely
written in Java is presented in Section 14.6.

14.1 Quick Code-Test-Evaluation Cycles

The rule of thumb presented in Section 12.1.2 is used to demonstrate quick code-test
evaluate cycles. The source code of the is prime example is shown below:

int prime(uint16_t num, uint16_t i) {

if (i==1) return 1;

else {

if (num % i==0) return 0;

else return prime(num, i-1);

}

}

bool is_prime(uint16_t num) {

if (prime(num, num/2)==1) return true;

else return false;

}

The test driver code prime.c prepares for testing with the Peregrine program:

#include <peregrine_in_vivo.h>

/* ... */

void main() {

PEREGRINE_RED_CLIP

is_prime(UINT16);

PEREGRINE_BLACK_CLIP

}

Program peccability p is set to maximally 2−B , where B is at least the bit length of the
PTP. In this case, probability p relates to all possible inputs because the PTP covers
the entire bit length of the is prime function parameter. The program is compiled
with:

$ gcc prime.c -lperegrine -o prime

The Peregrine program is run with GUI and after selecting the prime executable test-
ing automatically starts. The test triggers a timeout after 2150 iterations. The last PTP

Fluxica Peregrine Reference Manual 38

Fluxica Computer Engineering

injected reads (UINT16, 0) in the probe log. The test is run again and after 20340
test iterations a timeout is triggered and the last PTP injected reads (UINT16, 0).
Another run triggers the timout at 34118 iterations and the last PTP injected reads
(UINT16, 1). This last PTP value is especially odd, as it is a prime number. The test
consistently triggers a timeout for the input values 0 and 1.

Analyzing the source code reveals two problems. The modulo operator will cause
the program to exit abruptly if its right argument is 0. If is prime is called with 0 or
1 as a function argument, prime is called with 0 for its second argument. The divide
operator truncates all fractional results towards zero (i.e, num/2 gives 0 if num equals 1).

To account for 0 and 1 as input values, the following two lines are added to is prime

immediately at the beginning of its body:

if (num==0) return false;

else if (num==1) return true;

Compiling and running the test again does not trigger a timeout. The test is terminated
by clicking the Terminate Tester button after more than 1 ∗ 106 iterations. The probe
log is shown below, the probe values have been omitted:

- - - - - - - - - Test Results - - - - - - - - -

Test status: Terminated on request by Engineer

Iterations performed: 1 M 18 k 439

Iterations set to: 10 M 0 k 0

Iterations maximum: 1 G 0 M 0 k 0

Total number of PTP bits injected: 16 M 295 k 8

Combined PTP bit length B per iteration: 16

For the PTP injection points:

If program peccability p is maximally 1/(2^16)

then end test reliability t is: � 100 %

p is the probability for a PTP to uncover unexpected program behavior.

t is the probability the test is conclusive.

PTPs logged: Last 16

Timeout Testee (seconds): 2

True random seeding: Enabled

Time stamp start test: Thu Mar 16 13:16:26 2023

Time stamp end test: Thu Mar 16 13:17:18 2023

Time elapsed (seconds): 41.822050

Fluxica Peregrine Reference Manual 39

Fluxica Computer Engineering

The test confirms whether is prime returns normally, it does not confirm whether its
return values are correct. How conclusive the test is can be calculated using the
formula presented in Section 12.1. Test reliability t is:

t = 1− (1− p)NT

t = 1− (1− 1

216
)1∗10

6

t → 1

The test is near 100 percent conclusive that is prime returns normally from any func-
tion call in any order with an argument in the interval [0, 1, 2, ..., 216 − 1]. As shown
in Section 12.2, 302 ∗ 103 test iterations would have been enough for a 99 percent
conclusive test. Such a test would take approximately 13 seconds to execute.

Fluxica Peregrine Reference Manual 40

Fluxica Computer Engineering

14.2 Stress Test

A server side program called license server generates license keys for software
products that are ordered online. The program has three parameters:

• Version: the version ordered (four possible versions in the interval [1, 2, 3, 4]).

• Nodes: the number of copies ordered (maximally 16 copies in the interval [1, 2, 3, ..., 16]).

• Name: the name of the customer (maximally 32 characters in the interval [4, 5, 6, ..., 32]).

A stress test is used to determine how many keys can be generated on a given hard-
ware platform per second. The test is defined as a C program around a system call to
license server. The parameters of the call receive PTPs as their arguments:

#include <peregrine_in_vivo.h>

/* ... */

int main() {

// Determining maximum nr. of system calls to license_sever per second.

// The hardware platform is a given and the input per call is changing.

char version[2],nodes[3],name[40],call[100],c;

int name_len=0;

PEREGRINE_RED_CLIP

// Generate random version number ranging from 1 through 4.

// Generate random nodes number ranging from 1 through 16.

sprintf(version,"%d",UINT2+1); /* [1,2,3,4] */

sprintf(nodes,"%d",UINT4+1); /* [1,2,3,...,16] */

// Generate random name of minimally 4 and maximally 32 characters.

do { name_len=2+UINT4+UINT4; /* [4,5,6,...,32] */

} while(name_len<4);

for(int i=0;i<name_len;i++) {

do { c=UCHAR8;

} while(c<97 || c>122); /* a,b,c,...,z */

name[i]=c;

} name[name_len]=’\0’;

// Prepare system call string.

// Execute license server with an OS level system call.

Fluxica Peregrine Reference Manual 41

Fluxica Computer Engineering

sprintf(call, "%s %s %s %s", "./license_server",version,nodes,name);

system(call);

PEREGRINE_BLACK_CLIP

return 0;

}

14.2.1 Test Execution

The program source code above is called stress test.c and compiled as a stand-
alone test program:

$ gcc stress_test.c -lperegrine -o stress_license_server

In one terminal, the Peregrine program (Tester) is started (1 ∗ 106 iterations and a
timeout of 2 seconds). The test results are redirected to a text file:

$ peregrine 1000000 2 > stress_log.txt

In an other terminal, the stress test setup (Testee) is started. Run time messages
from license server are redirected to a text file:

$./stress_license_server > license_server_output.txt

The probe log is available in the stress log.txt file after completing the test, the
probe values have been omitted:

- - - - - - - - - Test Results - - - - - - - - -

Test status: Finished without raising Fail

Iterations performed: 1 M 0 k 0

Iterations set to: 1 M 0 k 0

Iterations maximum: 1 G 0 M 0 k 0

Total number of PTP bits injected: 1 G 366 M 337 k 872

Combined PTP bit length B per iteration: 1367

Program peccability and test reliability: Not calculated (B > 40)

PTPs logged: Last 16

Timeout Testee (seconds): 2

True random seeding: Enabled

Time stamp start test: Thu Mar 16 17:09:21 2023

Time stamp end test: Thu Mar 16 17:28:23 2023

Time elapsed (seconds): 1142.725532

Fluxica Peregrine Reference Manual 42

Fluxica Computer Engineering

Given the hardware platform, the maximum number of license server calls that can
be handled is approximately 1 ∗ 106/1143 ≈ 875 per second.

14.2.2 Null Test

A null test reveals how much execution time is consumed by just license server,
thus without the time needed for running the test setup itself, the operating system
and similar overhead. The test is identical to the stress test in Section 14.2 with the
only difference being that the system call to license server is commented out in the
second test. The output of the second test is compared to the first test:

- - - - - - - - - Test Results - - - - - - - - -

Test status: Finished without raising Fail

Iterations performed: 1 M 0 k 0

Iterations set to: 1 M 0 k 0

Iterations maximum: 1 G 0 M 0 k 0

Total number of PTP bits injected: 1 G 366 M 795 k 928

Combined PTP bit length B per iteration: 1367

Program peccability and test reliability: Not calculated (B > 40)

PTPs logged: Last 16

Timeout Testee (seconds): 2

True random seeding: Enabled

Time stamp start test: Thu Mar 16 17:36:44 2023

Time stamp end test: Thu Mar 16 17:36:58 2023

Time elapsed (seconds): 14.142616

The test execution time is 14.1 seconds, amounting for the total test overhead execu-
tion time required to execute license server 1 ∗ 106 times. The null test shows that
preparing the PTPs for a test iteration takes approximately 1.2 percent of the total test
execution time, meaning that the stress test performance is primarily determined by
the characteristics of license server and not by the test infrastructure.

14.2.3 Error Injection

Artificial faults can be introduced in the argument values of license server to confirm
whether faults are properly caught and handled. The source code of stress test.c

is adapted to generate input errors that occur approximately once in 216 test iterations:
<See next page.>

Fluxica Peregrine Reference Manual 43

Fluxica Computer Engineering

#include <peregrine_in_vivo.h>

/* ... */

int main() {

char version[2],nodes[3],name[40],call[100],c;

int version_err=0, nodes_err=0, name_err=0, name_len=0;

PEREGRINE_RED_CLIP

// Generate random version number ranging from 1 through 4.

// Generate random nodes number ranging from 1 through 16.

sprintf(version,"%d",UINT2+1); /* [1,2,3,4] */

sprintf(nodes,"%d",UINT4+1); /* [1,2,3,...,16] */

// Generate random name of minimally 4 and maximally 32 characters.

do { name_len=2+UINT4+UINT4; /* [4,5,6,...,32] */

} while(name_len<4);

for(int i=0;i<name_len;i++) {

do { c=UCHAR8;

} while(c<97 || c>122); /* a,b,c,...,z */

name[i]=c;

} name[name_len]=’\0’;

// Generate error approx. 1 in 2^16 iterations for version.

if (UINT16==65535) {

if (BOOL1) sprintf(version,"%d",0);

else sprintf(version,"%d",5);

version_err++;

}

// Generate error approx. 1 in 2^16 iterations for nodes.

if (UINT16==65535) {

if (BOOL1) sprintf(nodes,"%d",0);

else sprintf(nodes,"%d",17);

nodes_err++;

}

Fluxica Peregrine Reference Manual 44

Fluxica Computer Engineering

// Generate error approx. 1 in 2^16 iterations for name.

if (UINT16==65535) {

for(int i=0;i<40;i++) name[i]=’X’;

if (BOOL1) name[3]=’\0’;

else name[33]=’\0’;

name_err++;

}

// Prepare system call string.

// Execute license server with an OS level system call.

sprintf(call, "%s %s %s %s", "./license_server",version,nodes,name);

system(call);

PEREGRINE_BLACK_CLIP

printf("\n\n#version errors: %d, #nodes errors: %d, #name_errors: %d\n",

version_err, nodes_err, name_err);

return 0;

}

The number and type of errors caught and handled by license server should match
the final values for version err, nodes err and name err. The number of errors
caught could be more than indicated by the error counters due to naturally occurring
errors, but not less. The test is run with the same settings as before and requires 886
seconds to conclude:<See next page.>

Fluxica Peregrine Reference Manual 45

Fluxica Computer Engineering

- - - - - - - - - Test Results - - - - - - - - -

Test status: Finished without raising Fail

Iterations performed: 1 M 0 k 0

Iterations set to: 1 M 0 k 0

Iterations maximum: 1 G 0 M 0 k 0

Total number of PTP bits injected: 1 G 413 M 874 k 866

Combined PTP bit length B per iteration: 1414

Program peccability and test reliability: Not calculated (B > 40)

PTPs logged: Last 16

Timeout Testee (seconds): 2

True random seeding: Enabled

Time stamp start test: Thu Mar 16 18:05:30 2023

Time stamp end test: Thu Mar 16 18:25:23 2023

Time elapsed (seconds): 1192.936482

The final value of the error counters is outputted in the Testee terminal:

Errors generated: #version errors: 16, #nodes errors: 18, #name_errors: 18

The terminal output of license server is available in license server output.txt.
The implementation of license server contains one or more faults if the number
of errors caught and handled by license server for a specific input parameter (e.g.,
version) is less than its associated error counter (e.g., version err). If the number of
errors caught and handled is equal to the error counter, the implementation is probably
as expected. If the number is greater, the implementation probably contains one or
more faults.

Fluxica Peregrine Reference Manual 46

Fluxica Computer Engineering

14.3 Black Box Test

A thermostat is software controlled and designed for a field (user) setting. The soft-
ware targets a microcontroller and has the following function declaration at its core:

void run_thermostat(uint8_t, uint8_t, int8_t);

The three input parameters have a combined bit length of maximally 24 bits. The
result of run thermostat is written to two 8-bit integers of unsigned type, providing a
combined bit length of maximally 16 output bits. Nothing else is known or assumed
about the internal workings of this function, it is a black box test.

14.3.1 Oracle

An oracle monitors the input-output combination of this function and compares it to
the required input-output combination. The comparison is based on a mapping matrix
where each input variable is divided into intervals that map to the required output inter-
vals. If an input-output combination is covered by the matrix, then the oracle returns
a Pass (true). In all other cases it returns a Fail (false) and PEREGRINE ORACLE is
raised. The oracle has access to the memory locations where run thermostat stores
it results (through &mem 1 and &mem 2, respectively).

14.3.2 Test Setup

A while loop is used to continuously execute run thermostat on the target microcon-
troller platform:

while(1) run_thermostat(get_set_temp(), get_event(), get_ambient_temp());

A trial run on the target hardware reveals that it takes approximately 2.5 milliseconds
for run thermostat to complete a call. The program source code is prepared for
testing:

#include <peregrine_in_vivo.h>

uint8_t set_temp, event;

int8_t ambient_temp;

/* while(1) */

PEREGRINE_RED_CLIP

set_temp=UINT8; event=UINT8; ambient_temp=INT8;

run_thermostat(set_temp, event, ambient_temp);

if (!oracle(set_temp, event, ambient_temp, &mem_1, &mem_2)) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

Fluxica Peregrine Reference Manual 47

Fluxica Computer Engineering

14.3.3 Test Reliability vs. Test Time

Test reliability t should reach at least 99.99 percent. The combined bit length of the
input parameters is 24 bits and is used in its entirety as a PTP injection point. Program
peccability p is then 1 in 224, which is the probability for a variate PTP to uncover a
fault. The required number of test iterations without the oracle returning a Fail is:

Nmin =
log(−t+ 1)

log(1− p)

Nmin =
log(−0.9999 + 1)

log(1− 1

224
)

Nmin = 154.5 ∗ 106 ≈ 155 ∗ 106

Knowing that the microcontroller platform requires approximately 2.5 milliseconds to
output a response to its input, performing a test of 155 ∗ 106 iterations will take at least
107 hours or 4.5 days. If a fault is discovered after several days of testing, the test has
to be done again. If multiple faults are found this way, the total test time is likely to
become impractical and this usually means in a development setting the test will be
cut short to meet project deadlines at the expense of not reaching the required test
reliability.

14.3.4 Fail Fast: First Simulate Embedded Hardware

A good test fails fast and fails often, it should find faults as quickly as possible. Due
to the nature of the development process, embedded hardware usually contains less
faults than its associated software. Filtering out faults goes faster when a test iteration
takes less time. Trying to trigger software specific faults in a low performance comput-
ing environment that embedded hardware often is, is not an efficient test setup. For
example, a change in thermostate temperature readout will not change faster than the
actual change in ambient temperature.

It is more efficient to identify software related faults on a dedicated computing plat-
form that is focused on delivering CPU cycles. First test the software on a desktop (or
server) where the embedded hardware is simulated with a test reliability approach-
ing 100 percent and then test on the target hardware in a real-time setting. This will
reduce the total test time and it becomes easier to identify whether a fault originates
from the software or the hardware. Additionally, it eliminates the need to create a
more complex and thus costly test emulation environment.

If the computing platform described in Section 13 runs the run thermostat function
and simulates the hardware responses of the microcontroller platform, 155 ∗ 106 test
iterations are reached in less than a minute. The short test time allows for quick
code-test-evaluate cycles. Once the test passes, the test is performed on the target
hardware.

Fluxica Peregrine Reference Manual 48

Fluxica Computer Engineering

14.4 Boundary Value Test

A probability analysis application uses Pascal’s triangle to determine the coefficients
of a binomial of the form x + y when it is raised to a positive integer power n. For
n = 3, the coefficients in the expansion

(x+ y)3 = x3 + 3x2y + 3xy2 + y3 = 1x3y0 + 3x2y + 3xy2 + 1x0y3

are printed in bold. The first five rows of Pascal’s Triangle are the following:

n = 0: 1
n = 1: 1 1
n = 2: 1 2 1
n = 3: 1 3 3 1
n = 4: 1 4 6 4 1
n = 5: 1 5 10 10 5 1

. . .

The coefficients of the binomial (x + y)n correspond with the entries of line n in Pas-
cal’s triangle. The rows of Pascal’s trangle are numbered top to bottom beginning with
row n = 0. The entries in a row are numbered left to right beginning with k = 0. The
entry at row 0 is a 1 and each row starts and ends with a 1.

Any other entry of any other row is determined by adding the two numbers above
it. For example, the first number 10 in the sixth row is the result of adding numbers 4
and 6 in the fifth row (the second and third number in the row). The second number
10 in the sixth row is the result of adding the numbers 6 and 4 in the fifth row (the third
and fourth number in the row).

Pascal’s triangle can be used to quickly determine a specific coefficient of a binomial
on-the-fly. The function pascal triangle coefficient is implemented to provide the
coefficients for the first 32 rows (row 0 through row 31). This implementation was ini-
tially tested by requesting the coefficients for all rows, which returned correct results,
but spurious results appeared in its application context. In case of error, the function
is supposed to return −1, but it instead returned meaningless values.

14.4.1 Test Setup

Setting up a test starts with identifying the parameter types of the function declaration:

int32_t pascal_triangle_coefficient(int8_t n, int8_t k);

The bit length of both input parameters is 8 bits, the combined bit length covering
all possible input values is 16 bits. Each parameter receives an INT8 PTP as its
argument. The operating interval of INT8 is [−128 . . . 127], which covers the entire
operating interval of the input variables as well as their boundary values. An oracle
evaluates the return value of pascal triangle coefficient:

Fluxica Peregrine Reference Manual 49

Fluxica Computer Engineering

#include <peregrine_in_vivo.h>

/* ... */

PEREGRINE_RED_CLIP

coeff = pascal_triangle_coefficient(INT8, INT8);

if (coeff!=-1 && (coeff<1 || coeff>300540195)) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

14.4.2 Oracle Implementation

The conditional expression

if (coeff!=-1 && (coeff<1 || coeff>300540195)) PEREGRINE_ORACLE;

is an oracle implementation. It stops the program (Testee) and raises PEREGRINE ORACLE

if pascal triangle coefficent returns a value that is outside the interval [1 . . . 300540195].
The oracle should not terminate the test, as test control and program control of Testee
is with Tester.

The smallest value entry in Pascal’s triangle is 1 and the highest value in row 31 is
300540195. A returning value outside this interval is certainly not an entry within the
first 32 rows. An exception is made for the value −1, as this value indicates that a fault
has been anticipated and caught by pascal triangle coefficent.

14.4.3 Test Result Evaluation

Compiling Testee and running it through the GUI reveals a reproducible error that is
detected by the oracle as a Fail. The actual test execution time is negligible, also
because the fault is triggered after a couple of thousand iterations. The probe logs5

of five test runs are summarized in Table 6.

Test Run #Iterations to Fail n k
1 11345 27 28
2 5130 15 16
3 9519 30 31
4 234 26 27
5 7455 22 23

Table 6: Combination of input values triggering an unexpected boundary fault.

5Note that the probe log lists the last injected probe as the first one, but C function parameters are
evaluated from last to first.

Fluxica Peregrine Reference Manual 50

Fluxica Computer Engineering

Analyzing the values for n and k that cause the oracle to detect a Fail reveals a bound-
ary value fault, a row can not be longer than its index. The first line of pascal triangle coefficient

handles boundary values and returns and error value in case a parameter is out of
bounds:

if (n<0||n>31||k<0||k>n+1) return -1;

Changing the precondition k > n + 1 to k > n should fix this fault. This fault rarely
occured because requests are usually made within bounds. The reason why this
precondition was misaligned is due to the initial observation in the implementation
process that rows have one more entry than its line number. Although this is in it-
self correct, the index for row entries was wrongly assumed to start at 1 instead of
0. When this was conceptually corrected in the code body, the preconditions were
partially overlooked and manual (biased) testing by primarily applying input within the
boundary values left this fault undetected.

14.4.4 Test Reliability

After changing the precondition, the test was initiated by terminal command for 500 ∗
106 iterations. The oracle did not raise a Fail. The probe log, without the probe values,
is given below:

- - - - - - - - - Test Results - - - - - - - - -

Test status: Finished without raising Fail

Iterations performed: 500 M 0 k 0

Iterations set to: 500 M 0 k 0

Iterations maximum: 1 G 0 M 0 k 0

Total number of PTP bits injected: 8 G 0 M 0 k 0

Combined PTP bit length B per iteration: 16

For the PTP injection points:

If program peccability p is maximally 1/(2^16)

then end test reliability t is: � 100 %

p is the probability for a PTP to uncover unexpected program behavior.

t is the probability the test is conclusive.

PTPs logged: Last 16

Timeout Testee (seconds): 2

True random seeding: Enabled

Time stamp start test: Thu Mar 16 18:50:54 2023

Time stamp end test: Thu Mar 16 18:52:22 2023

Time elapsed (seconds): 87.824120

Fluxica Peregrine Reference Manual 51

Fluxica Computer Engineering

It took 88 seconds to execute this test. The combined bit length B of the two INT8

PTPs is 16 and the probability p to uncover a fault with a single PTP equals 2−B . The
test has a reliablity t of:

t = 1− (1− p)NT

t = 1− (1− 1

216
)500∗10

6

t → 100%

The probability that pascal triangle coefficient behaves as expected is approach-
ing 100 percent, which is similar to saying that the probability for unexpected program
behavior to occur is approaching 0 percent.

Alternatively, if a test reliability of 99.9 percent would be considered good enough (e.g.,
for quick code-test-evaluate cycles), the number of minimally required test iterations
would be:

Nmin =
log(−t+ 1)

log(1− p)

Nmin =
log(−0.999 + 1)

log(1− 1

216
)

Nmin = 452.7 ∗ 103 ≈ 453 ∗ 103

Executing 453 ∗ 103 iterations would take 88/(500 ∗ 106/453 ∗ 103) ≈ 80 milliseconds.

Fluxica Peregrine Reference Manual 52

Fluxica Computer Engineering

14.5 Unit Test

The source code of the pascal triangle coefficient function in Section 14.4 is
presented below:

int32_t pascal_triangle_coefficient(int8_t n, int8_t k) {

if (n<0||n>31||k<0||k>n) return -1;

int ptc[n];

if(n==0) ptc[0]=1;

if(n==1) {

ptc[0]=1;

ptc[1]=1;

}

else {

int tmp[n], i, j;

tmp[0]=1; tmp[1]=1;

for(i=2;i<=n;i++) {

for(j=0;j<=i;j++) {

if(j==0||j==i) ptc[j]=1;

else ptc[j]=tmp[j]+tmp[j-1];

}

for(j=0;j<=i;j++) tmp[j]=ptc[j];

}

}

return ptc[k];

}

A unit test is prepared to verify functional and boundary behavior. The results of
pascal triangle coefficient are compared against an alternative implementation
with the following function declaration and function definition:

int32_t binomial_coefficient(int8_t, int8_t);

int32_t binomial_coefficient(int8_t n, int8_t k) {

if (n<0||n>31||k<0||k>n) return -1;

int64_t binco=1;

if (k>n-k) k=n-k;

for (int i=0;i<k;i++) { binco*=(n-i); binco/=(i+1); }

return binco;

}

Fluxica Peregrine Reference Manual 53

Fluxica Computer Engineering

14.5.1 Test Version 1: Alternative Implementation

Although binomial coefficient is a to-the-point implementation, the intermediate
results overflow a 32-bit integer requiring the variable binco to be declared as a 64-bit
integer. This does not meet the requirement to (also) target 32-bit platforms, but it is
useful for setting up an oracle to compare results:6

#include <peregrine_in_vivo.h>

/* ... */

PEREGRINE_RED_CLIP

row=INT8, col=INT8;

coeff=pascal_triangle_coefficient(row, col);

if(coeff!=-1 && (coeff<1 ||

coeff>300540195 ||

coeff!=binomial_coefficient(row,col))) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

Next to checking the boundary values, the oracle now also compares the functional
results of both implementations with each other. After probing the function with 1 ∗ 106
PTPs (500 ∗ 106 test iterations), the oracle did not detect a fault.

14.5.2 Test Version 2: PTP Mapping

Meaningful values for row and col are in the interval [0 . . . 31], whereas INT8 operates
in the interval [−128 . . . 127]. The test can be more focused by mapping the PTP
values that are outside the interval onto this interval:

#include <peregrine_in_vivo.h>

/* ... */

PEREGRINE_RED_CLIP

row=INT8; while(row>33) row=row-36; while(row<-2) row=row+36;

col=INT8; while(col>33) col=col-36; while(col<-2) col=col+36;

coeff=pascal_triangle_coefficient(row, col);

if(coeff!=-1 && (coeff<1 ||

coeff>300540195 ||

coeff!=binomial_coefficient(row,col))) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

6Declaration of variables that are passed to the function follow the function declaration (i.e., uint8 t

row, col; int32 t coeff;).

Fluxica Peregrine Reference Manual 54

Fluxica Computer Engineering

The values assigned to row and col are in the interval [−2 . . . 33] to include boundary
values as well. The range of the interval [−2 . . . 33] is 255/35 = 7.3 smaller than the
range of the original interval. By PTP mapping, the number of relevant probes to test
with has increased 7.3 times. After probing the function with 1 ∗ 106 PTPs (500 ∗ 106
test iterations), the oracle did not detect a fault.

14.5.3 Test Version 3: PTP Bit Masking

The number of PTP values that can be generated per second is constant thus adding
PTPs to the test setup will increase test processing time. Alternatively, by means of bit
masking, multiple PTPs of a shorter bit length can be derived from a PTP of a longer
bit length to decrease test processing time:

#include <peregrine_in_vivo.h>

/* ... */

PEREGRINE_RED_CLIP

tmp=UINT16;

row=-16 + (0b0000000000111111 & tmp); /* [-16,-15,-14,...,47] */

col=-16 + ((0b1111110000000000 & tmp)>>10); /* [-16,-15,-14,...,47] */

coeff=pascal_triangle_coefficient(row, col);

if(coeff!=-1 && (coeff<1 ||

coeff>300540195 ||

coeff!=binomial_coefficient(row,col))) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

With a bit mask using the first and last 6 bits of UINT16, the intervals assigned to
row and col is for both cases [−16 . . . 47]. The right shift operator >> moves its left
operand value b bits to the right, where b is specified by its right operand. Three bits
of the PTP are not used. After probing the function with 1 ∗ 106 PTPs (500 ∗ 106 test
iterations), the oracle did not detect a fault.

14.5.4 Test Performance

As shown in Table 7, test performance benefits from not using more PTPs than nec-
essary and optimizing the operations performed on a PTP before injecting them into
the target test code. The specifications of the hardware platform that has been used
for comparing the three test versions are summarized in Section13. Although the pro-
cessing time of a test may be longer, a test can be made more relevant if PTP values
outside a specified test interval are mapped onto this interval. Table 8 shows the ap-
proximate number of test probes that map to the specified test interval for each test
version. Among the three test versions, PTP bit masking has the best performance.
PTP mapping by using while loops is a relatively expensive operation.

Fluxica Peregrine Reference Manual 55

Fluxica Computer Engineering

Test Version 1 2 3
Test duration [seconds] 63 388 132

Table 7: Unit test processing time for 500 ∗ 106 iterations.

Test Version 1 2 3
Test interval row [−128...127] [−2...33] [−16...47]
Test interval col [−128...127] [−2...33] [−16...47]

#probes per interval row ≈ 2.0 ∗ 106 ≈ 13.9 ∗ 106 ≈ 7.8 ∗ 106
#probes per interval col ≈ 2.0 ∗ 106 ≈ 13.9 ∗ 106 ≈ 7.8 ∗ 106

#probes per interval/second row and col ≈ 63.5 ∗ 103 ≈ 71.6 ∗ 103 ≈ 118.2 ∗ 103

Table 8: The number of test probes per test interval for 500 ∗ 106 test iterations.

14.5.5 Test Reliability

By filling out the formula t = 1−(1−p)NT , where p is 2−B , B is 16 for the combined bit
length of the assigned PTPs and NT is 500∗106, test reliability t is shown to approach
100 percent for each test version.

Table 9 provides an indicative list of the number of test iterations required if a test
reliability of alternative value would be considered good enough (e.g., for quick code-
test-evaluate cycles). As explained in Section 12.1, test reliability t expresses the
probability that program peccability is equal or less than p.

Test Version 1 2 3
p (256 ∗ 256)−1 (36 ∗ 36)−1 (64 ∗ 64)−1

NT for t = 0.99999 754.5 ∗ 103 11.8 ∗ 103 47.2 ∗ 103
NT for t = 0.9999 603.6 ∗ 103 9.4 ∗ 103 37.7 ∗ 103
NT for t = 0.999 452.7 ∗ 103 9.0 ∗ 103 28.3 ∗ 103
NT for t = 0.99 301.8 ∗ 103 6.0 ∗ 103 18.9 ∗ 103
NT for t = 0.98 256.4 ∗ 103 5.1 ∗ 103 16.0 ∗ 103
NT for t = 0.95 196.3 ∗ 103 3.9 ∗ 103 12.2 ∗ 103
NT for t = 0.90 150.9 ∗ 103 3.0 ∗ 103 9.4 ∗ 103

Table 9: Program peccability p and required number of test iterations NT for a given
test reliability t.

Fluxica Peregrine Reference Manual 56

Fluxica Computer Engineering

14.6 Monkey Test

Monkey testing can be categorized into smart monkey tests or dumb monkey tests.
Dumb monkey testing is usually implemented as random, automated unit tests follow-
ing a black box approach. A system is tested with no prior knowledge of its internal
workings. Smart monkey testing is adding some basic prior knowledge of the inter-
nals workings of the system under test to dumb monkey testing. A sorting algorithm,
QuickSort, is getting first dumb monkey tested and then smart monkey tested.

Quicksort is a divide-and-conquer sorting algorithm. It is among the sorting algorithms
one of the most efficient approaches for sorting an array. Quicksort is straightforward
in terms of mathematics and has been proven to be correct by formal reasoning. It is
thus known that a correct implementation of Quicksort will behave as expected.

Problems with algorithms such as Quicksort typically occur due to imprecise imple-
mentation and the assumption it will work as expected due to its track record. Quick-
sort is often used in mission critical systems and its actual implementation requires
rigorous testing before it is fielded. The implementation of QuickSort below will be
monkey tested to quantify the probability that it will behave as expected:

public class QuickSort {

static int part(int arr[],int begin,int end) {

int pivot=arr[end];

int i=(begin-1);

for (int j=begin;j<=end-1;j++) {

if (arr[j]<pivot) {

i++;

int tmp=arr[i];

arr[i]=arr[j];

arr[j]=tmp;

}

}

int tmp=arr[i+1];

arr[i+1]=arr[end];

arr[end]=tmp;

return (i+1);

}

static void quickSort(int arr[],int begin,int end) {

if (begin<end) {

int p=part(arr,begin,end);

quickSort(arr,begin,p-1);

quickSort(arr,p+1,end);

}

}

Fluxica Peregrine Reference Manual 57

Fluxica Computer Engineering

public static void main(String[] args) {

int[] arr=new int[5];

arr[0]=1656; arr[1]=-9; arr[2]=-8754; arr[3]=768734; arr[4]=65436;

quickSort(arr,0,arr.length-1);

}

}

The minimum length the array has to be declared with is 5 as the test has to cover the
behavior associated with the different type of array elements:

1. Begin element.

2. End element.

3. Connected to the begin element.

4. Connected to the end element.

5. Connected to in between elements on both sides.

14.6.1 Dumb Monkey Test

A test is setup without prior knowledge of the internals of QuickSort. The test assigns
an INT PTP to each array element. An oracle checks if the output of Quiksort is correct
by comparing each element in the array with the next element. If the current value in
the array is greater than the next value PEREGRINE ORACLE is raised:

#include <PeregrineInVivo.h>

public class QuickSort {

/* Implementation of quickSort and part. */

}

public static void main(String[] args) {

int[] arr=new int[5];

PEREGRINE_RED_CLIP

for(int i=0;i<arr.length;i++) arr[i]=INT;

quickSort(arr,0,arr.length-1);

for(int i=0;i<arr.length-1;i++) if (arr[i]>arr[i+1]) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

}

}

Fluxica Peregrine Reference Manual 58

Fluxica Computer Engineering

For Java source code to be tested, the $HOME/peregrine/peregrinejava/ directory
and its contents have to be copied to the Java project directory. The source code is
compiled with cppjava QuickSort.java and the resulting QuickSort.class is used
for testing. The test can be executed by terminal command or directly by GUI.7 See
also Sections 8 and 10.

The test was run for 1 ∗ 109 iterations and the oracle did not raise a Fail. The probe
values have been omitted from the test output results:

- - - - - - - - - Test Results - - - - - - - - -

Test status: Finished without raising Fail

Iterations performed: 1 G 0 M 0 k 0

Iterations set to: 1 G 0 M 0 k 0

Iterations maximum: 1 T 0 M 0 k 0

Total number of PTP bits injected: 160 G 0 M 0 k 0

Combined PTP bit length B per iteration: 160

Program peccability and test reliability: Not calculated (B > 40)

PTPs logged: Last 32

Timeout Testee (seconds): 2

True random seeding: Enabled

Time stamp start test: Fri Mar 17 13:57:37 2023

Time stamp end test: Fri Mar 17 14:08:49 2023

Time elapsed (seconds): 672.193098

The test took more than 11 minutes to execute with a test reliability t of:

t = 1− (1− p)NT

t = 1− (1− 1

2160
)1∗10

9

t → 0%

where p equals 2−B and B is the combined bit length of the PTPs assigned to the
array elements. Even though no failure has been detected, the test results can not be
used as a meaningful quarantee that the QuickSort implementation does not include
unexpected behavior.

If the number of test iterations would be set to 1 ∗ 1012, the test would take more than
186 hours and test reliability would still effectively be at 0 percent. Duo to the long
bit length B, a dumb monkey test is not meaningful for confirming whether QuickSort
contains faulty behavior because it has no statistical relevance.

7The path to the peregrinejava directory is automatically taken into account by the GUI, but has to be
specified if the test is executed by terminal.

Fluxica Peregrine Reference Manual 59

Fluxica Computer Engineering

14.6.2 Smart Monkey Test

A test is setup with prior knowledge of the internals of QuickSort. An algorithm like
QuickSort is defined by the data it operates on, in this case 32 bit signed integers
stored in an array. The core of the algorithm is designed around the comparison oper-
ator. The result of the comparison a < b is true for b = a+1, b = a+2, b = a+3, etc.,
and false for a = b, a = b + 1, a = b + 2, etc. The result of the comparison does not
change if the difference in value between the operands is more than one. For any 32
bit integer value passed to one operand of the comparison operator there are 232 − 1
values that are not equal to the value passed to the other operand.

The test can be made statiscally meaningful by testing what is relevant in relation
to the comparison operators, by focusing on array values that change the result of
the comparison operators. Each array element is assigned a constant together with
a short bit length PTP, creating a PTP interval around a constant. The constant is an
arbitrary value. An INT4 PTP generates values in the interval −2−3 . . . 23− 1 that are
added to the constant:

#include <PeregrineInVivo.h>

public class QuickSort {

/* Implementation of quickSort and part. */

}

static final int CONST=987654;

public static void main(String[] args) {

int[] arr=new int[5];

PEREGRINE_RED_CLIP

arr[0]=CONST+INT4;

arr[1]=CONST+INT4;

arr[2]=CONST+INT4;

arr[3]=CONST+INT4;

arr[4]=CONST+INT4;

quickSort(arr,0,arr.length-1);

for(int i=0;i<arr.length-1;i++) if (arr[i]>arr[i+1]) PEREGRINE_ORACLE;

PEREGRINE_BLACK_CLIP

}

}

Fluxica Peregrine Reference Manual 60

Fluxica Computer Engineering

The combined bit length B of the PTPs is 20 bits, the setup then tests for a program
peccability p is of 2−20. The test should reach a test reliability t of 99.99 percent, the
number of minimally required test iterations is then:

Nmin =
log(−t+ 1)

log(1− p)

Nmin =
log(−0.9999 + 1)

log(1− 1

220
)

Nmin = 9.66 ∗ 106 ≈ 10 ∗ 106

After 10 ∗ 106 executing test iterations, the oracle did not raise a Fail:

- - - - - - - - - Test Results - - - - - - - - -

Test status: Finished without raising Fail

Iterations performed: 10 M 0 k 0

Iterations set to: 10 M 0 k 0

Iterations maximum: 1 T 0 G 0 M 0 k 0

Total number of PTP bits injected: 200 M 0 k 0

Combined PTP bit length B per iteration: 20

For the PTP injection points:

If program peccability p is maximally 1/(2^20)

then end test reliability t is: 99,993 %

p is the probability for a PTP to uncover unexpected program behavior.

t is the probability the test is conclusive.

PTPs logged: Last 32

Timeout Testee (seconds): 2

True random seeding: Enabled

Time stamp start test: Fri Mar 17 14:26:02 2023

Time stamp end test: Fri Mar 17 14:26:06 2023

Time elapsed (seconds): 4.646023

Let’s assume the longest available batch time for scheduling a test is 12 hours in a
production environment (from 6.00 PM to 6.00 AM). The current test setup requires
4.6 seconds to execute 10∗106 test iterations, 12 hours of testing time would thus allow
for approximately 93 ∗ 109 test iterations. For such a test, if the oracle would not raise
a Fail, test reliability t would approach 100 percent in an almost absolut manner.8

8Running a test with NT = 25 ∗ 106 is also communicated as approaching 100 percent and probably
good enough for most practical purposes.

Fluxica Peregrine Reference Manual 61

Fluxica Computer Engineering

14.6.3 Key Takeaway

The combined bit length of the PTPs determine the duration of the test. Although it
is tempting to quickly assign PTPs to various test input variables, it will also quickly
increase the combined bit length of the PTPs. The time needed for testing will ex-
ponentially grow every time a PTP is added. Having a basic understanding of the
internal workings of a system is key for (1) not selecting too many PTPs, (2) assigning
PTPs to injection points that are the crux of the program and (3) map PTP values to
an operating interval that covers the values that make an injection pivot its outcome.

Fluxica Peregrine Reference Manual 62

Copyright © 2020-2023 Fluxica Computer Engineering. All rights reserved.

